Cytotoxicity and Genotoxicity of Iron Oxide Nanoparticles: an in Vitro Biosafety Study

نویسندگان

  • Erdal Sonmez
  • Elanur Aydin
  • Hasan Turkez
  • Elvan Özbek
  • Basak Togar
  • Kadem Meral
  • Damla Çetin
  • Ivana Cacciatore
  • Antonio Di Stefano
چکیده

With the development of nanotechnology and the wide use of iron oxide nanoparticles, it has become necessary to assess the potential adverse biological effects of magnetite. This study investigated the cytotoxicity, genotoxicity and oxidative damage of different concentrations of magnetite (0 to 1000 mg/L) in human whole blood cultures. After supplementation of magnetite, the blood samples were incubated for 72 h. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays. The total antioxidant capacity (TAC) and total oxidant status (TOS) were determined to evaluate the dose-dependent effects of magnetite on the oxidant/antioxidant balance and to evaluate the potential oxidative injury due to increased oxidative stress. Genotoxicity was estimated by by the sister chromatid exchange (SCE), micronuclei (MN) and chromosome aberration (CA) assays and determination of 8-oxo-2-deoxyguanosine (8-OH-dG) levels. The results of MTT and LDH assays showed that the higher concentrations of magnetite (100, 150, 300, 500 and 1000 mg/L) decreased cell viability. Concentrations of magnetite higher than 10 mg/L increased TOS levels and decreased TAC levels in human blood cells. Increasing concentrations of magnetite caused significant increases in MN, SCE and CA rates and 8-OH-dG levels. The obtained results showed that magnetite exerted dose-dependent effects on oxidative damage, genotoxicity and cytotoxicity in human blood cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histological Evaluation of the Fetus Lung in NMRI Mice after Exposure to Iron Oxide Nanoparticles: an in vitro Study

Background and Aim: Iron oxide nanoparticles are used in fields related to nanotechnology including ecology, magnetic storage, imaging and medicinal purposes. Iron nanoparticles produce reactive oxygen species (Ros). These materials are able to cross the placenta. The aim of this study was to investigate toxic effect of iron oxide nanoparticles on fetal lung in mice. <br ...

متن کامل

Synthesis and Cytotoxicity Assessment of Gold-coated Magnetic Iron Oxide Nanoparticles

Introduction: One class of magnetic nanoparticles is magnetic iron oxide nanoparticles (MIONs) which has been widely offered due to of their many advantages. Owing to the extensive application of MIONs in biomedicine, before they can be used in vivo, their cytotoxicity have to be investigated. Therefore, there is an urgent need for understanding the potential risks associated with MIONs.Materia...

متن کامل

Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were en...

متن کامل

The Cytotoxicity of Dextran-coated Iron Oxide Nanoparticles on Hela and MCF-7 Cancerous Cell Lines

Background: Recently, iron oxide nanoparticles have attracted attention in various diagnosis and treatment fields. The aim of the present study was to investigate the cytotoxicity of various concentrations and incubation times of dextran-coated iron oxide nanoparticles (DIONPs) on HeLa and MCF-7 cancerous cell lines. Methods: This in-vitro study was conducted at Pharmaceutical Sciences Researc...

متن کامل

Magnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles

Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016